Намагничивание постоянных магнитов. Магнитное поле: постоянные и переменные магниты

поднимающейся после его окончания, либо в виде неподвижной камеры с открывающейся дверью.

В установках диэлектрического нагрева экранированию подлежат пластины рабочего конденсатора и фидеры, подводящие к ним высокочастотную энергию. Экран может выполняться в виде металлической камеры, шкафа, короба и т.п.

Смотровые окна в экранирующих камерах и генераторных устройствах экранируются с помощью мелкоячеистой металлической сетки с плотным контактом по периметру окон.

Линии питания технологических элементов высокочастотной энергии должны быть выполнены коаксиальными кабелями или заключены в металлические экраны. Экраны комплектуются электроблокировкой, исключающей подачу высокочастотной энергии при открытии или снятии экрана.

3.5.4 Постоянные и переменные магнитные поля

Источники постоянных и переменных магнитных полей. Их влияние на организм человека

Магнитные поля (МП) могут быть постоянными, импульсными и переменными.

Источниками постоянного магнитного поля на производстве являются технологическое оборудование и процессы, в которых используются электромагниты постоянного тока, литые и металлокерамические магниты, а переменного магнитного поля промышленной частотой (50 Гц) – линии электропередач (ЛЭП), различные силовые установки, токоведущие части мощного технологического оборудования и линии электропитания.

Магнитные поля промышленной частоты возникают вокруг любых электроустановок и токопроводов. Чем больше ток в проводе, тем выше интенсивность магнитного поля.

Интенсивность магнитных полей характеризуется магнитной индукцией В , Тл (тесла), потоком магнитной индукцииФ , Вб (вебер) и напряженностью Н,А /м (ампер на метр).

Магнитная индукция характеризует направление действия магнитной силы и ее значение в данной точке поля. Магнитная индукция – это векторная величина, которая численно равна силе, с которой магнитное поле действует на проводник длиной в 1м с протекающим по нему током в 1А и определяется:

B = IF l,

где В – магнитная индукция, Тл;F – сила, действующая на проводник с током, Н;I – сила тока в проводнике, А;l – длина проводника, м.

Поток магнитной индукции – это физическая величина,

характеризующая количество магнитной индукции, воздействующее на

единицу площади поверхности. Поток магнитной индукции Ф определяется по формуле:

Ф = Scos α ,

где S – площадь поверхности, м2 ;α – угол между направлением действия магнитной индукции и нормалью к поверхности.

Напряженность постоянного и переменного магнитного поля – это физическая величина, характеризующая магнитное поле и определяемая по формуле:

H = B

μ a,

где μ a – абсолютная магнитная проницаемость, равнаяμ a = μ 0 μ , гдеμ 0 – магнитная постоянная (4 π 10 7 Гн /м );μ – магнитная проницаемость среды.

Соотношение между значением напряженности магнитного поля и магнитной индукцией следующее:

1мТл = 800А/м; 1А/м = 1,25 мкТл.

Негативное воздействие магнитных колебаний выражается в нарушении функции ЦНС, сердечно-сосудистой системы и других систем организма, что способствует снижению работоспособности, ухудшению психофизиологического состояния и угнетению общей активности.

В последнее время появляются публикации о возможном влиянии неинтенсивных магнитных полей на возникновение злокачественных заболеваний. В частности, ученые Швеции обнаружили у детей до 15 лет, проживающих около ЛЭП, что при магнитной индукции 0,2 мкТл они заболевают лейкемией в 2,7 раза чаще, чем в контрольной группе, удаленной от ЛЭП, и в 3,8 раза чаще, если индукция выше 0,3 мкТл, то есть при напряженности магнитного поля около 0,24 А/м.

Существует большое количество гипотез, объясняющих биологическое действие магнитных полей. В основном они сводятся к индуцированию токов в живых тканях и непосредственному влиянию поля на клеточном уровне.

Относительно безвредными для человека в течение длительного времени следует признать МП, имеющее порядок геомагнитного поля и его аномалий, т.е. напряженности МП не более 0,15-0,20 кА/м. При более высоких напряженностях МП начинает проявляться реакция на уровне организма. Характерной чертой этих реакций является длительная задержка относительно начала действия МП, а также ярко выраженный кумулятивный эффект при длительном действии МП. В частности, эксперименты, проведенные на людях, показали, что человек начинает ощущать МП, если оно действует не менее 3-7 с. Это ощущение сохраняется некоторое время (около 10 с.) и после окончания действия МП.

Нормирование и гигиеническая оценка магнитных полей

Нормируемыми параметрами магнитных полей являются напряженность поля и магнитная индукция, предельно допустимые значения, которых для

постоянного поля представлены в таблице 3.8, а для переменного – в таблицах 3.9 и 3.10.

Таблица3.8 Предельнодопустимыезначениянапряженностиимагнитнойиндукции

дляпостоянногомагнитногополя.

Область воздействия

воздействия

Локальное

за рабочий

(конечности)

день, час

Напряженность

Магнитная

Напряженность

Магнитная

индукция,

индукция,

Способы и средства защиты от магнитных полей

При защите от магнитных полей применяются организационно– планировочные и технические способы и средства.

К работе с источниками магнитных полей (магнитными материалами, оборудованием) допускаются лица не моложе 18 лет, прошедшие предварительный и периодический осмотры не реже одного раза в год.

Источники магнитных полей, располагаемые в общих производственных помещениях должны выделяться в отдельные участки с разрывом от других на расстояние 1,5–2,0 м. Установки, являющиеся источниками магнитных полей, должны быть удалены друг от друга и других рабочих мест не менее чем на

Таблица3.9 Предельнодопустимыезначениямагнитнойиндукции(В ПД ) и

напряженности(Н ПД ) переменныхмагнитныхполейприимпульсном воздействии.

Длительность пауз между

Длительность пауз между

импульсами tn ≤ 2с

импульсами tn > 2c

Продолжительность

Длительность импульса

Длительность импульса τ u

воздействия, час

0,02с≤ τ u ≤ 1,0с

τ u ≥ 0,02с

1,0с≤ τ u ≤ 60с

Таблица3.10 Предельнодопустимыеуровнимагнитнойиндукции(В ПД ) инапряженности

(Н ПД ) переменногомагнитногополяпринепрерывномдействии.

Область воздействия

Продолжительность воздействия, час

Локальное (конечности)

«Магнитомягкие» материалы (трансформаторное железо, кремниевая сталь и др.) должны располагаться на расстоянии не менее 1,0 м от установок– источников магнитного поля, так как они могут стать дополнительными источниками магнитного поля.

Намагниченные материалы должны храниться в специальных приспособлениях («Ярмах»), которые частично или полностью замыкают магнитные поля.

Для защиты от переменных магнитных полей могут использоваться экраны из ферромагнитных материалов различной конструкции.

3.5.5 Ультрафиолетовые излучения

Источники и биоэффекты ультрафиолетового излучения

Ультрафиолетовые излучения занимают спектральную область, лежащую между самыми длинными волнами рентгеновского излучения и самыми короткими волнами видимого спектра, то есть от 0,2 до 0,4 мкм.

В зависимости от биоэффектов, вызываемых ультрафиолетовым излучением, указанный диапазон разделяется на три основные части:

- длинноволновой (ближнее излучение) с длиной волны от 0,4 до 0,32

- средневолновой (эритемное излучение) с длиной волны от 0,32 до 0,28

Коротковолновой (бактерицидное излучение) с длиной волны менее

Мощнейшим естественным источником ультрафиолетового излучения

(УФИ) является солнечная радиация, которая, благодаря стратосферному озоновому слою на пути к Земле значительно ослабляется в диапазоне от 0,25 до 0,35 мкм. Определенное влияние на ослабление УФ-излучения оказывают также облака и загрязненность атмосферы пылегазовоздушными отходами производства.

Искусственными источниками УФ-излучения являются лампы накаливания, газоразрядные лампы и, особенно, сварочные аппараты, плазменные горелки и лазеры.

Ультрафиолетовое излучение характеризуется двояким действием на организм: с одной стороны, опасностью переоблучения, а с другой его необходимостью для нормального функционирования организма человека, поскольку УФ-лучи являются важным стимулятором некоторых биологических процессов, в том числе синтеза ряда биологически активных веществ (например, витамина Д).

Облучение людей УФ-лучами может вызвать у них эритенное и канцерогенное действие. Эритемное проявляется в покраснении и пигментации («загар») кожи (при λ≤0,32 мкм), а канцерогенное в накожных раковых заболеваниях (при λ=0,23-0,32 мкм). Пигментация кожи является нормальной фотохимической реакцией и не влечет за собой никаких осложнений. Она становится заметной у европейцев при величине УФ-излучения равным около

0,03 Дж см 2 .

Под воздействием УФ-излучения с длиной волны около 0,288 мкм могут наблюдаться фотоаллергические реакции, а облучение глаз значительными уровнями – воспаления коньюктивы (коньюктивит) и роговой оболочки (кератит).

Нормирование и оценка ультрафиолетового излучения. Способы и средства защиты

Так как ультрафиолетовое излучение вызывает двоякое действие на людей, то при нормировании допустимых значений учитывается, необходимость ограничения его при больших интенсивностях и обеспечение необходимых уровней для предотвращения ультрафиолетовой недостаточности.

Нормируемым параметром ультрафиолетового излучения является эритемная доза (ЭТД) в эр. По мощности один эр (λ=0,29 мкм) равен одному Вт.

Предельно допустимое значение эритемной дозы ЭТД ПД равно 600-

900 мкэр мин. см2

Для профилактики ультрафиолетовой недостаточности необходима

примерно десятая частьЭТД ПД , т.е. порядка 60-90 мкэр мин .

см2

Оценка бактерицидного действия УФ-излучения производится в бактах

Куда ни кинь взгляд, всюду - магнит. Когда-то школьникам рассказывали только про компас, позже - про применение в промышленности, в последнее время заговорили о будущем поезде на магнитной подвеске. Хотя можно было бы сказать, что любой электродвигатель и любой трансформатор - электромагнит. Сегодня убедить читателя в важности магнитов стало проще: достаточно сказать, что магнит почти наверняка есть у него дома (на дверце холодильника и в микроволновке), в кармане (в сотовом), десятки магнитов - в компьютере и автомобиле. В промышленности и медицине их вообще не счесть, и физика элементарных частиц без них не обходится - они стоят и по всему периметру ускорительного кольца, и в большинстве детекторов элементарных частиц.

Есть постоянные магниты, есть электромагниты. Постоянные имеют один большой плюс - не потребляют энергию, и несколько минусов - их поле нельзя регулировать (а если можно, то медленно - механически перемещая), и оно не может быть очень сильным. Электромагниты свободны от этих недостатков, но зато у них есть тот, которого нет у постоянных магнитов, - они потребляют энергию, и много потребляют. Иногда говорят, что проблему решают электромагниты со сверхпроводящими обмотками, как у Токамака. Но, во-первых, ни жидкого гелия, ни жидкого азота на Земле из озера не зачерпнешь, а во-вторых, магнитное поле таких электромагнитов тоже трудно регулировать.

Возникает идея: скрестить электрическое и магнитное поле, найти вещество или создать материал, при помещении которого в электрическое поле он становится магнитом, а в магнитном поле, наоборот, проявляет электрические свойства. О таких веществах рассказывается в статье А. П. Пятакова и А. К. Звездина из Московского государственного университета им. М. В. Ломоносова и Института общей физики им. А. М. Прохорова.

Переменный постоянный магнит

Магнитные и электрические явления известны с античных времен, но связать их между собой удалось намного позже, уже после работ классиков электромагнетизма: Эрстеда, Ампера, Фарадея, Максвелла. Вслед за Ампером магнитные свойства постоянных магнитов стали объяснять «молекулярными» токами, текущими внутри вещества в каждой молекуле. Хотя природа молекулярных токов долгое время оставалась непонятой, сама возможность вечного движения зарядов внутри вещества казалась многообещающей (такая возможность реализуется и в сверхпроводниках, но при низких температурах). Если бы с помощью электрического поля удалось воздействовать на молекулярные токи, то можно было бы управлять постоянными магнитами практически без потерь энергии.

Слева направо: Пьер Кюри (1859–1906), Бернард Теллеген (1900–1990), Л. Д. Ландау (1908–1968) (справа) и Е. М Лифшиц (1915–1985), И. Е. Дзялошинский (слева) и Д. Н. Астров, Джордж Радо, Г. А. Смоленский (1910–1986)

В 1884 году французский физик Пьер Кюри высказал мысль, что существование таких молекул и веществ, которые намагничивались бы под действием электрического поля, не противоречит известным законам. Американский инженер-электроник Бернард Теллеген позже предложил создать композит - магнитоэлектрическую среду в виде взвеси, где плавали бы частицы, представлявшие собой магнитики, сцепленные с кусочками электрета. А электрет - это вещество, которое можно «зарядить» внешним электрическим полем, и оно после этого долго, например годы, создает вокруг себя электрическое поле, как магнит - магнитное. Электретами являются многие хорошие диэлектрики, однако материалы, сочетающие в себе свойства и электрета и магнита, ни найдены, ни созданы не были. Хотя название для них придумали - «магнитоэлектрики».

Дело сдвинулось с мертвой точки, когда Л. Д. Ландау и Е. М. Лифшиц указали, что магнитоэлектрики надо искать среди антиферромагнетиков, то есть кристаллов, состоящих из противоположно намагниченных подрешеток (рис. 1). И. Е. Дзялошинский назвал в 1959 году конкретное соединение - Cr2O3, и через год магнитоэлектрический эффект в этом материале был обнаружен Д. Н. Астровым. За несколько лет до того американские ученые в группе профессора Джорджа Радо пытались обнаружить магнитоэлектрические свойства у различных веществ, но поиски оказались безрезультатными, поскольку они не знали о работах Ландау, Лифшица и Дзялошинского - переводы книг и статей выходили с задержкой. Узнав об открытии Астрова, они продемонстрировали на Cr2O3 и обратный эффект - электрическую поляризацию, наводимую магнитным полем.


Рис. 1. Антиферромагнетизм. Идею антиферромагнитного упорядочения предвосхитили рисунки Мориса Эшера, например «День и ночь» (а), в соседних узлах кристаллической ячейки магнитные стрелки (моменты) ионов направлены противоположно (б)

В это же время в ленинградском Физико-техническом институте, в группе Г. А. Смоленского, вели поиск магнитных сегнетоэлектриков. Обычный сегнетоэлектрик - это вещество, которое само по себе, без участия внешнего воздействия, создает и внутри себя, и снаружи электрическое поле, то есть в некотором смысле электрический аналог постоянного магнита. А магнитный сегнетоэлектрик - материал, в котором бы при отсутствии внешних полей наблюдались бы и намагниченность, и электрическая поляризация. Предполагалось замещение магнитными элементами ионов в уже известных сегнетоэлектриках, и первый «сегнетомагнетик» (или «мультиферроик», как теперь называют эти материалы) получился «сложносочиненным», это был твердый раствор (1–x)Pb(Fe2/3W1/3)O3 - xPb(Mg1/2W1/2)O3 .

Сегнетомагнетики и мультиферроики: термины-химеры

На свое несчастье Духов я призвал.
И. В. Гёте, «Ученик чародея»

Три класса ферроиков: сегнетоэлектрические, магнитные и сегнетоэластические вещества. На пересечении этих множеств лежат мультиферроики

Многие привычные слова представляют собой подобие мифологической химеры - животного с головой льва, туловищем козы и хвостом змеи. Так слово «автобус» получилось соединением частей слов «автомобиль» и «омнибус» (от лат. omnibus - всем, для всех). Похожим образом термин «сегнетомагнетик» составлен из двух слов «сегнетоэлектрик» и «ферромагнетик». Слово «сегнетоэлектрик» происходит от первого обнаруженного вещества, в котором существует поляризация в отсутствие электрического поля (спонтанная электрическая поляризация), - сегнетовой соли, названной по имени французского аптекаря Сеньета (Seignette). А есть и другое чудо - вещества, в которых при понижении температуры кристалл, оставаясь целым, разбивается на домены - области с разной ориентацией кристаллической решетки (это называется структурным фазовым переходом). Таким образом, слово «сегнетомагнетик» уже представляет собой довольно странный гибрид, но еще более «химеричен» термин «мультиферроик».

Химера античной мифологии

В англоязычной научной литературе названия всех этих трех классов веществ начинаются с приставки «ферро»: ferromagnetics, ferroelastics, ferroelectrics, хотя железо здесь ни при чем. Это не помешало, однако, в середине прошлого века японскому ученому Кейчиро Айдзу назвать все три класса общим термином «ferroics» - ферроики. Похожая история произошла в английском языке: кусочек от «омнибуса» перекочевал в «автобус», а потом bus стал самостоятельным словом, означающим кроме автобуса еще и канал передачи данных.

В случае ферроиков история имела продолжение: в начале девяностых годов прошлого века из бутылки был выпущен новый джинн - термин «мультиферроик» (от лат. multi - много) - для обозначения вещества, которое одновременно принадлежит хотя бы двум классам ферроиков. В начале нашего столетия, когда появились новые среды с магнитными и электрическими свойствами, это слово неожиданно быстро завоевало признание и вытеснило «сегнетомагнетик», так что сам создатель неологизма, швейцарский ученый Ганс Шмид, когда речь заходит о придуманном им термине, вспоминает стихотворение Гёте, отрывок из которого приведен в качестве эпиграфа.

Перемешать или прослоить?

Позже нашли и более простые соединения, а особенно интересным оказался феррит висмута BiFeO3 (рис. 2). Большинство его замечательных свойств - следствие отличий от идеальной кубической структуры. Вращение кислородных октаэдров (рис. 2а) приводит к тому, что в этом антиферромагнетике магнитные стрелки соседних ионов уже не строго противоположны, образуя угол меньше 180 градусов. В результате они не полностью компенсируют друг друга, и появляется общая намагниченность кристалла (такие материалы называют слабыми ферромагнетиками). Электрические и магнитоэлектрические свойства обусловлены смещением ионов вдоль главной диагонали куба, а также искажениями октаэдра (рис. 2б). Кристалл феррита висмута способен также растягиваться в лучах света (рис. 2в) и превращаться в полупроводниковый диод под действием электрического поля (рис. 2г). Последнее превращение происходит из-за кислородных вакансий - заряженных дефектов, которые изменяют тип проводимости.


Рис. 2. Кристаллическая структура феррита висмута: в центрах кубов находятся ионы железа, в вершинах - ионы висмута, в центрах граней - ионы кислорода: вращение кислородных октаэдров (а), смещение ионов вдоль диагонали куба и вызванное им искажение октаэдров - смещения ионов показаны стрелками (б), электрострикция в феррите висмута - растяжение образца под действием светового излучения, под стоваттной лампой относительное удлинение составляет около тысячной процента, что не так уж и мало для твердого тела (в), образование p-n перехода под действием электрического поля в результате перемещения кислородных вакансий (г)

Таких «высокотемпературных» магнитоэлектриков, как феррит висмута, совсем немного, едва ли больше десятка, да и те имеют существенный недостаток - заметную проводимость при комнатной температуре. Это сводит на нет главное достоинство магнитоэлектрического способа получения магнитного поля - при приложении электрического поля в таком веществе начнет протекать ток, а значит, расход энергии становится ощутимым. Поэтому в 70-х годах прошлого столетия были предприняты первые попытки создать искусственные композиционные магнитоэлектрические среды в виде смеси двух порошков (рис. 3а): магнитострикционные частички изменяли форму в магнитном поле, они воздействовали на частички пьезоэлектрика, а те, в свою очередь, при деформации электрически поляризовались.


Идея была замечательная, но эффект оказался малым и нестабильным. При перемешивании получались комки и сгустки, а образование каналов из проводящих магнитострикционных частиц приводило к «короткому замыканию» образца, а значит, и к отсутствию электрического напряжения. Тогда возникла идея «слоеного пирога» или сэндвича из магнитострикционного и пьезоэлектрического материалов, склеенных вместе (рис. 3б). Проводящие каналы теперь не образовывались, и магнитоэлектрический эффект стал в 50 раз больше, чем в Cr2O3. С помощью датчиков на сэндвич-структурах удавалось измерить магнитные поля в миллион раз меньшие, чем поле Земли, - такие создает наше сердце, перегоняя кровь по сосудам.

Когда структура влияет на свойства

Новый этап в создании композиционных материалов наступил с приходом современных технологий: теперь искусственные магнитоэлектрики изготавливают на чипах в виде пленок со столбчатыми наноструктурами (рис. 3в). Сэндвич-структуры в нанопленочном исполнении работают плохо - сцепление с подложкой-чипом не дает им свободно деформироваться, а столбики легко сжимаются и растягиваются в вертикальном направлении. Вдобавок такие структуры не надо было создавать специально, они «самоорганизуются» при одновременном осаждении на подложку двух веществ: магнитострикционного, например шпинели CoFe2O4, и пьезоэлектрического, например титаната бария BaTiO3 или феррита висмута BiFeO3. Изменяя кристаллографическую ориентацию подложки, можно выращивать как магнитострикционные столбики в пьезоэлектрической матрице, так и пьезоэлектрические столбики в магнитострикционной матрице (рис. 4).


Рис. 4. Строение нанокомпозита зависит от кристаллографической ориентации плоскости подложки: подложка с ориентацией(001) (а), подложка с ориентацией (111) (б); кубики соответствуют кристаллам пьезоэлектрика, октаэдры - кристаллам магнитострикционного материала

Что же вынуждает две фазы осаждаться таким образом? То же самое явление, которое заставляет капельку воды расплываться на чистом стекле и скатываться в шарик на поверхности, натертой воском, - поверхностное натяжение. Если подложка вырезана перпендикулярно кристаллографическому направлению (то есть оси z системы координат), то вещество магнитострикционного материала не смачивает поверхность, собираясь в капли, которые потом вырастают в столбики, в то время как пьезоэлектрическая фаза смачивает подложку и обволакивает столбики, образуя матрицу. На подложке (111) всё происходит наоборот: внутри магнитострикционной матрицы растет столбчатая структура из пьезоэлектрика.

Когда характерные размеры наноструктур составляют несколько межатомных расстояний, фазы композита начинают влиять на внутреннее строение и свойства друг друга. Если слои титаната бария перемежать магнитным материалом с похожей кристаллической структурой, например манганита лантана с замещением кальцием La0.7Ca0.3MnO3, то получается искусственная магнитоэлектрическая среда: благодаря близкому соседству кристаллические структуры двух материалов подвергаются взаимным искажениям, что приводит к взаимодействию электрической и магнитной подсистем. То есть удалось не только создать наноструктурированный материал, но и осуществлять инженерию на атомном уровне, изменяя сами свойства веществ-компонентов.

А как же первоначальная идея Кюри о магнитоэлектрических молекулах? Ее можно реализовать в органических молекулярных нанокластерах Dy3, в которых магнитными атомами являются три атома диспрозия, образующие правильный треугольник (рис. 5а). В состоянии молекулы с наименьшей энергией (в основном состоянии) магнитные стрелки (моменты) ионов диспрозия ориентированы параллельно противолежащей стороне треугольника (рис. 5а). Если бы магнитных ионов было больше (как, например, в недавно синтезированном кластере Dy6), они бы образовали «карусель» из магнитных моментов (рис. 5б). Такое упорядочение называют «тороидным», поскольку круговой электромагнит можно создать, намотав провод на магнитный сердечник в форме бублика (тора). Структуры с тороидным упорядочением, следуя традиции обозначать любое упорядочение словом «ферро», называют «ферротороиками». Они обладают магнитоэлектрическим эффектом - приложение магнитного поля вызывает перераспределение магнитных моментов: число ионов, у которых магнитные моменты направлены по магнитному полю, возрастает. Смещение магнитных ионов влечет перераспределение зарядов, так что возникает электрическая поляризация. Однако с равной вероятностью реализуются и состояния молекулы, в которых магнитные моменты направлены по часовой стрелке, и состояния с направлением моментов против часовой стрелки, а в этих случаях магнитоэлектрический эффект будет противоположным. Так что остается проблема, как получать тороидные структуры с одним направлением вращения магнитных моментов.


Рис. 5. Органический молекулярный нанокластер на основе редкоземельных ионов: взаимная ориентация магнитных моментов катионов диспрозия (а); при тороидном упорядочении магнитных моментов во внешнем магнитном поле H помимо намагниченности наводится электрическая поляризация P (б); для сравнения - тороидальный электромагнит (в центре)

Из монитора память не получится

Идея Теллегена о композите, состоящем из магнитоэлектрических частиц, которые вращаются в жидкости, была реализована с появлением первой модели электронных чернил - гирикона (от греч. «вращающееся изображение»). Гирикон - полимерная среда, в которую внедрены двухцветные сферические частицы из полиэтилена, вращающиеся внутри полостей с жидкостью (рис. 6). Полусферы частицы отличались не только цветом, но и электрическим зарядом. Поэтому их можно было ориентировать, прикладывая электрическое поле, и на белом фоне появлялись черные буквы. Когда же в частицы ввели магнитные примеси, электрическое поле стало управлять намагниченностью системы. Однако на вращение уходило около секунды, поэтому возникла идея «омагнитить» не электронную бумагу, а главную составляющую другого типа дисплеев - жидкие кристаллы.


Рис. 6. Гирикон: полимер с внедренными черно-белыми сферическими частицами (а), магнитоэлектрический композит на основе гирикона: частицы-диполи вращаются в микрополостях с жидкостью. +/– электрические, S, N - магнитные полюса (б)

В жидких кристаллах нематиках (от греч. «нить») продолговатые молекулы располагаются вдоль одного направления (рис. 7а). Жидкокристаллические мониторы работают благодаря свойству молекул нематика ориентироваться вдоль поля (рис. 7б), но если примешать к жидкому кристаллу магнитные наностолбики, то они будут поворачиваться вместе с молекулами. Получился магнитный материал, управляемый с помощью электрического поля, причем он откликался на изменение электрического поля намного быстрее - частота переключения составляла килогерцы.


Рис. 7. Жидкий кристалл с магнитными наностолбиками: в отсутствие электрического напряжения (а), при включении напряжения (б)

Это уже быстрее, но гирикон и жидкокристаллическая ячейка ни по размерам, ни по быстродействию не могут соперничать с элементами полупроводниковых микросхем, а значит, для устройств магнитной памяти не годятся. Вместо жидкого кристалла в устройствах магнитной памяти между электродами предлагали помещать слой твердотельного магнитоэлектрика, однако из-за малочисленности высокотемпературных магнитоэлектриков и больших токов утечки магнитоэлектрическая память пока еще далека от реализации.

«Умная пыль» собирает энергию

Миниатюризация электронных устройств - путь к созданию беспроводных сенсорных сетей, состоящих из множества датчиков, способных собирать, обрабатывать информацию и обмениваться ею между собой. Такие структуры иногда называют «умная пыль». Наиболее очевидные области применения - экологический и медицинский мониторинг, охранные системы. Но датчикам нужно питание, а с ним проблемы: если датчик находится внутри объекта (например, во вращающейся детали или в теле человека), то провод к нему не подведешь, батарейки недостаточно миниатюрны и долговечны, а солнечные батареи в темноте бесполезны.


Рис. 8. Дистанционное питание датчиков: магнитоэлектрический преобразователь на основе пьезоэлектрического и магнитострикционного материалов, расположенных на подложке из сужающейся металлической пластины - волноводного акустического концентратора (а), узел беспроводной сенсорной сети с магнитоэлектрическим питанием (б)

Интересной альтернативой представляется energy harvesting - получение энергии из окружающей среды. Это могут быть системы, накапливающие энергию механических, температурных колебаний или радиоволн, но поток энергии, поступающий от естественных источников, мал - меньше 1 мкВт/см2. Однако можно создать источник излучения, создающий в месте расположения датчиков переменное магнитное поле. Преобразовать энергию магнитного поля в электростатическую энергию заряженных конденсаторов можно с помощью магнитоэлектрического элемента, который состоит из слоев магнитострикционного и пьезоэлектрических материалов, расположенных на общей металлической подложке в форме сужающейся к одному концу пластины (рис. 8). Переменное магнитное поле вызывает периодическую деформацию магнитострикционной пластины на резонансной частоте. Эти механические колебания передаются подложке и распространяются по ней, так что при подходе к узкому концу возрастают концентрация акустической энергии и амплитуда колебаний. Колебания подложки передаются пластинкам пьезоэлектрика, и в них возникает переменное электрическое напряжение. Эта конструкция - разновидность магнитоэлектрического композиционного материала, однако при помощи акустического концентратора удается получить выигрыш в два раза по сравнению с традиционной многослойной структурой из скрепленных магнитных и пьезоэлектрических слоев.

Рис. 9. Механические колебания кантилевера из пьезоэлектрического материала: преобразуются в электрическую энергию (а), пьезоэлектрический элемент для сбора энергии при ходьбе (б)

Для электропитания имплантатов в медицине, автономных датчиков, а также средств связи и мобильной электроники лучше использовать механическое движение или вибрации, например колебания упругой пластинки (в современных микромеханике и нанотехнологиях такие пластинки называют кантилеверами) из пьезоэлектрического материала (рис. 9а). Когда кантилевер, изготовленный из магнитоэлектрического композиционного материала, колеблется в магнитном поле Земли, магнитострикционный слой испытывает дополнительные деформации, которые передаются пьезоэлектрическому слою, и в результате амплитуда переменного напряжения достигает десятка вольт. Такое устройство предлагается использовать на подводных аппаратах и буях, где всегда есть океанские волны и магнитное поле Земли.

Здесь надо сделать еще одно замечание: частоты колебаний, встречающиеся в естественных условиях, невелики - герцы, максимум десятки герц. Это означает, с одной стороны, малую мощность, вырабатываемую агрегатом (мощность пропорциональна кубу частоты), с другой стороны - совсем не микроскопические размеры устройств, способных вибрировать на этих низких частотах. В результате зарядные устройства дают лишь микроватт в пересчете на кубический сантиметр. Лучших результатов ожидают от использования других видов колебательного движения: человеческого тела при ходьбе (расположенные в ботинке пьезоэлементы (рис. 9б) уже позволяют получать до 1 мВт/см3) и еще более высокочастотных вибраций мотора автомобиля - до 30 мВт/см3. Но в любом случае о замене аккумуляторов в сотовых телефонах речь пока не идет. Сам сбор урожая даровой энергии («energy harvesting») напоминает известный процесс «по сусекам поскрести, по амбарам помести», и это объясняет, почему в таких случаях часто используют другой термин: «energy scavenging» (scavenging - уборка, утилизация мусора).

Проблема взаимосвязи магнитных и электрических явлений в твердом теле чрезвычайно многогранна, и в этой статье показаны лишь некоторые ее стороны. Эта область науки сейчас активно развивается, остается много непонятного, и неизвестные эффекты ждут своих первооткрывателей.

А. П. Пятаков, кандидат физико-математических наук
А. К. Звездин, доктор физико-математических наук

Литература:
1. Смоленский Г.А., Чупис И.Е. Сегнето-магнетики. «Успехи физических наук», 1982, 137, 415–448.
2. Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. «Nature», 2006, 442, 7104, 759–765, doi:10.1038/nature05023.
3. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мульти-ферроики. «Успехи физических наук», 2012, 182, 593–620.

> Постоянные магниты

Постоянным выступает магнит , созданный из ферромагнитного материала. Формируют стабильное магнитное поле.

Задача обучения

  • Описать примеры постоянных магнитов.

Основные пункты

  • Постоянные магниты создаются из намагниченного материала и формируют стабильные магнитные поля.
  • Намагниченные материалы, а также те, что притягиваются, именуют ферромагнитными.
  • В противовес им существует электромагнит, который намагничивается только при прохождении сквозь него электрического тока.
  • У магнитов всегда есть северный и южный полюса. Если вы разобьете его на две части, то у обоих снова будет два полюса.
  • Постоянные магниты изготавливают из ферромагнитных материалов, на которые давит магнитное поле и нагрев. Из-за этого их сложно размагнитить.

Термины

  • Электромагнит – притягивает металлы только при электрическом включении.
  • Ферромагнитный – любой легко намагничиваемый материал.
  • Постоянным именуют магнит, сберегающий свой магнетизм, даже если не ощущает на себе действия внешнего магнитного поля.

Постоянные магниты

Магнит – тело, способное вырабатывать магнитное поле. Его нельзя увидеть, но отвечает за любую заметную характеристику магнита.

Разновидности магнитов

Постоянный магнит – объект, созданный из намагниченного вещества, которое формирует собственное магнитное поле. В качестве примера можно привести обыкновенный магнитик на холодильник. Материалы, поддающиеся намагничиванию или легко притягивающиеся, именуют ферромагнитными.

Существует также электромагнит, который намагничивается только в том случае, если сквозь него пустить электрический ток.

Этот магнит напоминает подкову и создан из альнико (железный сплав). Форма позволяет ему прижать два магнитных полюса, чтобы сформировать сильное магнитное поле, способное удержать тяжелые железные обломки

Полярность

Все магниты обладают двумя полюсами: северный и южный. Они всегда существуют в парах. Даже если вы разделите магнит на две ровных части, то на обоих будет присутствовать по два полюса.

Северный и южный полюса наблюдаются парами. Если пытаться разделить их, то вы только увеличите количество. В итоге, достигнете железного атома с полюсами, которые нельзя разделить

Создание постоянных магнитов

Ферромагнитные материалы делят на мягкие (могут намагнититься, но не удерживают это свойство надолго) и твердые. Постоянные магниты из твердых (альнико и феррит) проходят специальную процедуру в сильном магнитном поле для выравнивания внутренней микрокристаллической структуры.

Если магнит поставить к ранее намагниченному ферромагнитному материалу, то он приводит к локальной намагниченности. В микроскопическом масштабе меняются области, где полюса выравниваются. До этого процесса участки малы и ориентированы беспорядочно, поэтому не создается чистого магнитного поля. Устройство может стать постоянным, если ферромагнитный материал нагревается и охлаждается.


Между двумя магнитами ставят немагнитную железку. Ее нагревают, а потом охлаждают. Железо превращается в постоянный магнит, чьи полюса выравниваются: южный примыкает к северному, а северный к южному. Отметьте, что между магнитами формируются силы притяжения

Понравилась запись? Расскажи о ней друзьям!!!

ПОСЛЕДНИЕ новости космоса

Ученые по-новому взглянули на важность атомов водорода в процессе формирования новых звезд. Полагают, что исключительно эти молекулы принимают участ...

    Парящий магнит

    Получение картины магнитного поля прямого тока постоянного магнита

    Магнитная левитация - Физика в опытах и экспериментах

    Субтитры

История развития магнитных материалов

Постоянные магниты, изготовленные из магнетита , применялись в медицине с древнейших времен. Царица Египта Клеопатра носила магнитный амулет. В древнем Китае в «Императорской книге по внутренней медицине» затрагивался вопрос применения магнитных камней для коррекции в теле энергии Ци - «живой силы». В более поздние времена о благотворном влиянии магнитов высказывались великие врачи и философы: Аристотель , Авиценна , Гиппократ . В средние века придворный врач Гилберт , опубликовавший сочинение «О магните», лечил от артрита королеву Елизавету I при помощи постоянного магнита. Русский врач Боткин прибегал к методам магнитотерапии .

Первым искусственным магнитным материалом стала углеродистая сталь, закалённая на структуру мартенсита и содержащая около 1,2-1,5 % углерода. Магнитные свойства такой стали чувствительны к механическим и температурным воздействиям. В ходе эксплуатации постоянных магнитов на её основе наблюдалось явление «старения» магнитных свойств стали.

  • Бариевые и стронциевые магнитотвердые ферриты

Имеют состав Ba/SrO·6 Fe 2 O 3 и характеризуются высокой устойчивостью к размагничиванию в сочетании с хорошей коррозионной стойкостью. Несмотря на низкие по сравнению с другими классами магнитные параметры и высокую хрупкость, благодаря низкой стоимости магнитотвердые ферриты наиболее широко применяются в промышленности.

  • Магниты NdFeB (неодим-железо-бор)

Редкоземельные магниты, изготавливаемые прессованием или литьем из интерметаллида Nd 2 Fe 14 B. Преимуществами этого класса магнитов являются высокие магнитные свойства (B r , H c и (BH) max), а также невысокая стоимость. В связи со слабой коррозионной устойчивостью обычно покрываются медью, никелем или цинком.

  • Редкоземельные магниты SmCo (Самарий-Кобальт)

Кроме того, существуют гибкие плоские магниты на полимерной основе с магнитными добавками, которые используются например, для изготовления декоративных магнитов на холодильники, оформительских и прочих работ. Выпускаются в виде лент и листов, обычно с нанесённым клеевым слоем и плёнкой, его защищающей. Магнитное поле у такого плоского магнита полосатое - с шагом около двух миллиметров по всей поверхности чередуются северные и южные полюса.

Феррид с фероопласто - параллельного и последовали пптп ппппвппяии - тельного типа с ферритовыми б.  

Переменные магниты входят также в конструкцию и других гер-коновых электромагнитных устройств.  


Время перемагничивания металлических переменных магнитов в виде пластин толщиной 0 2 - 0 4 мм равно 100 - 200 мкс, а для переменных магнитов, состоящих из пластин толщиной 0 1 мм, не превышает 50 - 80 мкс.  

Для изготовления переменных магнитов первых ферридов были использованы кобальтовые и кобальтникельцинковые ферриты с ППГ, с коэрцитивной силой в пределах 2500 - 4000 А / м и временем перемагничивания порядка 10 -: - 20 мкс. Основными их недостатками оказались малая индукция насыщения, в несколько раз меньшая, чем у металлических ферромагнетиков, и существенное ухудшение свойств с повышением температуры. Поэтому ферритовые переменные магниты были вытеснены из герконовой техники металлическими. К последним можно отнести стали, содержащие наряду с небольшим количеством углерода примеси таких элементов как вольфрам, хром и другие. Для изготовления переменных магнитов эти материалы не получили практического применения, так как лучшие свойства для этой цели имеют железокобальтовые сплавы со значительным (до 50 %) содержанием кобальта.  


В современных ферридах переменные магниты изготовляют не из ферритов, а из металлических ферромагнетиков, которые имеют в несколько раз большую индукцию насыщения и значительно меньшую зависимость параметров (Нс, Вт и Вы) от температуры.  

Когда же эти импульсы намагничивают переменные магниты так, что магнитный поток (пунктирные стрелки) замыкается внутри образованного ими кольца и не проходит через герконы, последние размыкаются.  

Условия термообработки сильно влияют на свойства переменных магнитов, и в частности, на величину коэрцитивной силы и прямоугольное петли гистерезиса. Однородные партии магнитов из этих сплавов возможно получить только при строгом соблюдении режима термообработки. Отжиг производится при температурах от 550 до 650 С (в зависимости от марки сплава) в массивных медных контейнерах, обеспечивающих однородную температуру (с разбросом, не превышающим несколько градусов) для всей партии отжигаемых изделий в течение всего процесса термической обработки. Благодаря высокой точке Кюри этих сплавов (ГК600 С) основные их магнитные параметры Br, Bs, Hc имеют при температурах от - 50 С до 100 С малые температурные коэффициенты. Изменение этих параметров во времени вследствие старения также достаточно мало. Намагниченное состояние может сохраняться в них сколь угодно длительное время, однако при трясках и ударах их остаточная индукция заметно снижается. Время перемагничивания магнитов т зависит от их размеров и формы. Одним из недостатков рассматриваемой группы сплавов является значительная твердость, что несколько затрудняет их штамповку, рубку и обработку.