Квантовые приборы с оптической накачкой, работающие по "трёхуровневой схеме". Мир современных материалов - принципы работы лазера Лазер обязательно состоит из трех основных компонент

В качестве лазерной среды могут применяться все материалы, у которых можно обеспечить инверсию населенности. Это возможно у следующих материалов:

а) свободные атомы, ионы, молекулы, ионы молекул в газах или парах;

б) молекулы красителей, растворенные в жидкостях;

в) атомы, ионы, встроенные в твердое тело;

г) легированные полупроводники;

д) свободные электроны.

Количество сред, которые способны к генерации лазерного излучения, и количество лазерных переходов очень велико. В одном только элементе неоне наблюдается около 200 различных лазерных переходов. По виду лазерной активной среды различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В качестве курьеза следует отметить, что человеческое дыхание, состоящее из двуокиси углерода, азота и водяных паров, является подходящей активной средой для слабого СО 2 -лазера, а некоторые сорта джина генерировали уже лазерное излучение, поскольку они содержат достаточное количество хинина с голубой флуоресценцией.

Известны линии лазерной генерации от ультрафиолетовой области спектра (100 нм) до миллиметровых длин волн в дальнем ИК-диапазоне. Лазеры плавно переходят в мазеры. Интенсивно ведутся исследования в области лазеров в диапазоне рентгеновских волн (рис. 16).. Но практическое значение приобрели только два-три десятка типов лазера. Наиболее широкое медицинское применение сейчас нашли СО 2 -лазеры, лазеры на ионах аргона и криптона, Nd:YAG-лазеры непрерывного и импульсного режима, лазеры на красителях непрерывного и импульсного режима, He-Ne-лазеры и GaAs-лазеры. Эксимерные лазеры, Nd:YAG-лазеры с удвоение частоты, Er:YAG-лазеры и лазеры на парах металлов также все шире применяются в медицине.

Рис. 16. Типы лазеров, наиболее часто применяемые в медицине.

Кроме того, лазерные активные среды можно различать по тому, формируют ли они дискретные лазерные лини, т.е. только в очень узком определенном интервале длин волн, или излучают непрерывно в широкой области длин волн. Свободные атомы и ионы имеют из-за их четко определенных энергетических уровней дискретные лазерные линии. Многие твердотельные лазеры излучают также на дискретных линиях (рубиновые лазеры, Nd:YAG-лазеры). Были разработаны, однако, также твердотельные лазеры (лазеры на центрах окраски, лазеры на александрите, на алмазе), длины волн излучения у которых непрерывно могут изменяться в большой спектральной области. Это касается в особенности лазеров на красителях, в которых эта техника прогрессировала в наибольшей степени. Лазеры на полупроводниках ввиду зонной структуры энергетических уровней полупроводников также не имеют дискретных четких лазерных линий генерации.


Лазер - это источник света со свойствами, резко отличающимися от всех других источников (ламп накаливания, люминесцентных ламп, пламени, естественных светил и так далее). Лазерный луч обладает рядом замечательных свойств. Он распространяется на большие расстояния и имеет строго прямолинейное направление. Луч движется очень узким пучком с малой степенью расходимости (он достигает луны с фокусировкой в сотни метров). Лазерный луч обладает большой теплотой и может пробивать отверстие в любом материале. Световая интенсивность луча больше, чем интенсивность самых сильных источников света.
Название лазер - это аббревиатура английской фразы: Light Amplification by Stimulated Emission of Radiation (LASER) . усиление света с помощью вынужденного излучения.
Все лазерные системы можно разделить на группы в зависимости от типа используемой активной среды. Важнейшими типами лазеров являются:

  • твердотельные
  • полупроводниковые
  • жидкостные
  • газовые
    Активная среда представляет собой совокупность атомов, молекул, ионов или кристалл (полупроводниковый лазер), которая под действием света может приобретать усиливающие свойства.

    Итак, каждый атом обладает дискретным набором энергетических уровней. Электроны атома, находящегося в основном состоянии (состояние с минимальной энергией), при поглощении квантов света переходят на болеее высокий энергетический уровень - атом возбуждается; при излучении кванта света все происходит наоборот. Причем излучение света, т.е переход на более низкий энергетический уровень (рис. 1б) может происходить самопроизвольно (спонтанно) или под действием внешнего излучения (вынужденно) (рис.1в). Причем, если кванты спонтанного излучения испускаются в случайных направлениях, то квант вынужденного излучения испускается в том же направлении, что и квант вызвавший это излучение, то есть оба кванта полностью тождественны.

    Рис.1 Виды лазерного излучения

    Для того чтобы преобладали переходы, при которых происходит излучение энергии (переходы с верхнего энергетического уровня на нижний), необходимо создать повышенную концентрацию возбужденных атомов или молекул (создать инверсную населенность). Это приведет к усилению падающего на вещество света. Состояние вещества, в котором создана инверсная населенность энергетических уровней, называется активным, а среда, состоящая из такого вещества - активной средой.

    Процесс создания инверсной населенности уровней называется накачкой. И еще одна классификация лазеров производится по способу накачки (оптический, тепловой, химический, электрический и т.д.). Методы накачки зависят от типа лазера (твердотельного, жидкостного, газового, полупроводникового и т.п.).
    Основная задача процесса накачки может быть рассмотрена на примере трехуровневого лазера (рис. 2)


    Рис.2 схема трехуровневого лазера

    Нижний лазерный уровень I с энергией E1, является основным уровнем энергии системы, на котором первоначально находятся все активные атомы. Накачка возбуждает атомы и соответственно переводит с основного уровня I, на уровень III,с энергией E3. Атомы, оказавшиеся на уровне III, излучают кванты света и переходят на уровень I, либо на быстро переходят на верхний лазерный уровень II. Чтобы происходило накапливание возбужденных атомов на верхнем лазерном уровне II,с энергией E2 , нужно иметь быструю релаксацию атомов с уровня III на II, которая должна превышать скорость распада верхнего лазерного уровня II. Созданная таким образом инверсная населенность обеспечит условия для усиления излучения.

    Однако что бы возникла генерация, необходимо еще обеспечить обратную связь, то есть что бы вынужденное излучение, раз возникнув, вызывало новые акты вынужденного излучения. Для создания такого процесса активную среду помещают в оптический резонатор.

    Оптический резонатор представляет собой систему двух зеркал, между которыми располагается активная среда (рис. 3). Он обеспечивает многократное происхождение световых волн, распространяющихся вдоль его оси по усиливающей среде, вследствие чего достигается высокая мощность излучения.


    Рис.3 Схема лазера

    При достижении определенной мощности излучение выходит через полупрозрачное зеркало. Из-за участия в развитии генерации только той части квантов, которые параллельны оси резонатора, К.П.Д. лазеров обычно не превышает 1%. В некоторых случаях, жертвуя теми или иными характеристиками, К.П.Д. можно довести до 30%.

  • Инверсию населенностей в лазерах создают разными способами. Чаще всего для этого используют облучение светом (оптическая накачка), электрический разряд, электрический ток, химические реакции.

    Для того, чтобы от режима усиления перейти к режиму генерации света, в лазере, как и в любом генераторе, используют обратную связь. Обратная связь в лазере осуществляется с помощью оптического резонатора, который в простейшем случае представляет собой пару параллельных зеркал.

    Принципиальная схема лазера показана на рис. 6. Она содержит активный элемент, резонатор, источник накачки.

    Лазер работает следующим образом. Сначала источник накачки (например, мощная лампа - вспышка), воздействуя на рабочее вещество (активный элемент) лазера, создает в нем инверсию населенностей. Затем инвертированная среда начинает спонтанно испускать кванты света. Под действием спонтанного излучения начинается процесс вынужденного излучения света. Благодаря инверсии населенностей этот процесс носит лавинообразный характер и приводит к экспоненциальному усилению света. Потоки света, идущие в боковых направлениях, быстро покидают активный элемент, не успевая набрать значительную энергию. В тоже время световая волна, распространяющаяся вдоль оси резонатора, многократно проходит через активный элемент, непрерывно набирая энергию. Благодаря частичному пропусканию света одним из зеркал резонатора излучение выводится наружу, образуя лазерный луч.

    Рис.6. Принципиальная схема лазера. 1- активный элемент; 2- система накачки;

    3- оптический резонатор; 4- генерируемое излучение.

    §5. Устройство и работа гелий-неонового лазера

    Рис.7. Принципиальная схема гелий - неонового лазера.

    1). Лазер состоит из газоразрядной трубки Т длиной от нескольких десятков см. до 1,5-2м и внутренним диаметром 7-10мм. Трубка наполнена смесью гелия (давление~1мм рт.ст.) и неона (давление ~0,1мм рт. ст.). Концы трубки закрыты плоскопараллельными стеклянными или кварцевыми пластинками Р 1 и Р 2 , установленными под углом Брюстера к ее оси. Это создает линейную поляризацию лазерного излучения с электрическим вектором, параллельным плоскости падения. Зеркала S 1 и S 2 , между которыми помещается трубка, делаются обычно сферическими с многослойными диэлектрическими покрытиями. Они имеют высокие коэффициенты отражения и практически не поглощают свет. Пропускаемость зеркала, через которое преимущественно выходит излучение лазера, составляет обычно 2%, другого - менее 1%. Между электродами трубки прикладывается постоянное напряжение 1-2кВ. Катод К трубки может быть холодным, но для увеличения разрядного тока применяют также трубки с пустотелым цилиндрическим анодом, катод которых нагревается низковольтным источником тока. Разрядный ток в трубке составляет несколько десятков миллиампер. Лазер генерирует красный свет с длиной волны =632,8 нм и может генерировать также инфракрасное излучение с длинами волн 1,15 и 3,39 мкм (см. рис. 2). Но тогда необходимо иметь торцевые окна, прозрачные для инфракрасного света, и зеркала с высокими коэффициентами отражения в инфракрасной области.

    2). В лазерах индуцированное излучение используется для генерации когерентных световых волн. Идея этого впервые была высказана в 1957 г. А.М. Прохоровым, Н.Г. Басовым и независимо от них Ч. Таунсом. Чтобы активное вещество лазера превратить в генератор световых колебаний, надо осуществить обратную связь. Это означает, что часть излученного света должна все время возвращаться в зону активного вещества и вызвать вынужденное излучение все новых и новых атомов. Для этого активное вещество помещают между двумя зеркалами S 1 и S 2 (см. рис.7), которые являются элементами обратной связи. Луч света, претерпевая многократные отражения от зеркал S 1 и S 2 , будет проходить много раз через активное вещество, усиливаясь при этом в результате вынужденных переходов с высшего энергетического уровня " 3 на более низкий уровень  " 1 . Получается открытый резонатор, в котором зеркала обеспечивают многократное прохождение (и тем самым усиление) светового потока в активной среде. В реальном лазере часть света, чтобы ее можно было использовать, должна быть выпущена из активной среды наружу. С этой целью одной из зеркал, например S 2 , делается полупрозрачным.

    Такой резонатор будет не только усиливать свет, но также коллимировать и монохроматизировать его. Для простоты предложим сначала, что зеркала S 1 и S 2 идеальны. Тогда лучи, параллельно оси цилиндра, будут проходить через активное вещество туда и обратно неограниченное число раз. Все же лучи, идущие наклонно, в конце концов, попадут на боковую стенку цилиндра, где они рассеются или выйдут наружу. Ясно поэтому, что максимально усилятся лучи, распространяющиеся параллельно оси цилиндра. Этим и объясняется коллимация лучей. Конечно, строго параллельные лучи получить нельзя. Этому препятствует дифракция света. Угол расхождения лучей принципиально не может быть меньше дифракционного предела  D , где D - ширина пучка. Однако, в лучших газовых лазерах такой предел практически достигнут.

    Объясним теперь, как происходит монохроматизация света. Пусть Z - оптическая длина пути между зеркалами. Если 2 Z = m , то есть на длине Z укладывается целое число полуволн m, то световая волна, выйдя от S 1 , после прохождения туда и обратно вернется к S 1 в той же фазе. Такая волна усилится при втором и всех следующих прохождениях через активное вещество в прямом и обратном направлениях. Ближайшая длина волны  , для которой должно происходить такое же усиление, найдется из условия 2 Z =(m 1)( ). Следовательно,  = / m , то есть  , как и следовало ожидать совпадает со спектральной областью интерферометрам Фабри-Перо. Учтем теперь, что энергетические уровни " 3 и  " 1 и спектральные линии, возникающие при переходах между ними, не бесконечно тонкие, а имеют конечную ширину. Предположим, что ширина спектральной линии, излучаемой атомами, меньше дисперсной области прибора. Тогда из всех длин волн, излучаемых атомами, условию 2 Z = m может удовлетворять только одна длина волны . Такая волна усилится максимально. Это и ведет к сужению спектральных линий, генерируемых лазером, то есть к монохроматизации света.

    Основные свойства пучка лазерного света:

      монохроматичность;

      пространственная и временная когерентность;

      высокая интенсивность;

      малая расходимость пучка.

    Благодаря высокой когерентности гелий-неоновый лазер служит превосходным источником непрерывного монохроматического излучения для исследования всякого рода интерференционных и дифракционных явлений, осуществления которых с обычными источниками света требует применения специальной аппаратуры.

    Лазер без преувеличения можно назвать одним из важнейших открытий XX века.

    Что такое лазер

    Говоря простыми словами, лазер - это устройство, создающее мощный узконаправленный пучок света. Название «лазер» (laser ) образовано путём сложения первых букв слов, составляющих английское выражение l ighta mplification bys timulatede mission ofr adiation , что означает «усиление света посредством вынужденного излучения». Лазер создаёт световые лучи такой силы, что они способны прожигать отверстия даже в очень прочных материалах, затрачивая на это лишь доли секунды.

    Обычный свет рассевается от источника по разным направлениям. Чтобы собрать его в пучок, используют различные оптические линзы или вогнутые зеркала. И хотя таким световым лучом можно даже разжечь огонь, его энергию невозможно сравнить с энергией лазерного луча.

    Принцип работы лазера

    В физической основе работы лазера лежит явление вынужденного, или индуцированного, излучения . В чём же его суть? Какое излучение называют вынужденным?

    В стабильном состоянии атом вещества имеют наименьшую энергию. Такое состояние считается основным , а все другие состояния - возбуждёнными . Если сравнить энергию этих состояний, то в возбуждённом состоянии она избыточна по сравнению с основным. При переходе атома из возбуждённого состояния в стабильное атом самопроизвольно испускает фотон. Такое электромагнитное излучение называется спонтанным излучением .

    Если же переход из возбуждённого состояния в стабильное происходит принудительно под воздействием внешнего (индуцирующего) фотона, то образуется новый фотон, энергия которого равна разности энергий уровней перехода. Такое излучение называется вынужденным .

    Новый фотон является «точной копией» фотона, вызвавшего излучение. Он имеет такую же энергию, частоту и фазу. При этом он не поглощается атомом. В результате фотонов становится уже два. Воздействуя на другие атомы, они вызывают дальнейшее появление новых фотонов.

    Новый фотон излучается атомом под воздействием индуцирующего фотона, когда атом находится в возбуждённом состоянии. Атом, находящийся в невозбуждённом состоянии, просто поглотит индуцирующий фотон. Поэтому, чтобы свет усиливался, необходимо, чтобы возбуждённых атомов было больше, чем невозбуждённых. Такое состояние называется инверсией населённости .

    Как устроен лазер

    В конструкцию лазера входят 3 элемента:

    1. Источник энергии, который называют механизмом «накачки» лазера.

    2. Рабочее тело лазера.

    3. Система зеркал, или оптический резонатор.

    Источники энергии могут быть разными: электрические, тепловые, химические, световые и др. Их задача - «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера . Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др.

    Рабочим телом , или лазерными материалами , называют вещества, выполняющие функции активной среды . Собственно в рабочем теле и зарождается лазерный луч. Как же это происходит?

    В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов - в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости . Эту задачу и выполняет механизм накачки лазера. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют световой луч огромной мощности.

    В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин.

    Рабочее тело помещается в оптический резонатор . Самый простой из них состоит из двух параллельных зеркал, одно из которых полупрозрачное. Часть света оно отражает, а часть пропускает. Отражаясь от зеркал, пучок света возвращается обратно и усиливается. Это процесс повторяется многократно. На выходе из лазера образуется очень мощная световая волна. Зеркал в резонаторе может быть и больше.

    Кроме того, в лазерах используют и другие устройства - зеркала, способные менять угол поворота, фильтры, модулятора и др. С их помощью можно изменять длину волны, длительность импульсов и других параметров.

    Когда изобрели лазер

    В 1964 г. русские физики Александр Михайлович Прохоров и Николай Геннадиевич Басов, а также американский физик Чарлз Хард Таунс стали лауреатами Нобелевской премии по физике, которая была присуждена им за открытие принципа работы квантового генератора на аммиаке (мазера), которое они сделали независимо друг от друга.

    Александр Михайлович Прохоров

    Николай Геннадиевич Басов

    Нужно сказать, что мазер был создан за 10 лет до этого события, в 1954 г. Он излучал когерентные электромагнитные волны сантиметрового диапазона и стал прообразом лазера.

    Автор первого рабочего оптического лазера - американский физик Теодор Майман. 16 мая 1960 г. он впервые получил красный лазерный луч, вышедший из красного рубинового стержня. Длина волны этого излучения составляла 694 нанометра.

    Теодор Майман

    Современные лазеры имеют разные размеры, от микроскопических полупроводниковых, до громадных, размером с футбольное поле, неодимовых лазеров.

    Применение лазеров

    Без лазеров невозможно представить современную жизнь. Лазерные технологии применяются в самых разных отраслях: науке, технике, медицине.

    В быту мы пользуемся лазерными принтерами. В магазинах применяются лазерные считыватели штрих-кодов.

    С помощью лазерных лучей в промышленности возможно проводить обработку поверхностей с высочайшей точностью (резку, напыление, легирование и др.).

    Лазер позволил измерить расстояние до космических объектов с точностью до сантиметров.

    Появление лазеров в медицине изменило многое.

    Трудно представить современную хирургию без лазерных скальпелей, которые обеспечивают высочайшую стерильность и разрезают ткани аккуратно. С их помощью проводят практически бескровные операции. С помощью лазерного луча очищают сосуды организма от холестериновых бляшек. Широко используется лазер в офтальмологии, где с его помощью делается коррекция зрения, лечатся отслоения сетчатки, катаракта и др. С его помощью дробят камни в почках. Незаменим он в нейрохирургии, ортопедии, стоматологии, косметологии и т.д.

    В военном деле применяют лазерные системы локации и навигации.

    В такой схеме (рис. 1) нижним лазерным уровнем "1" является основное энергетическое состояние ансамбля частиц, верхним лазерным уровнем "2" является относительно долгоживущий уровень, а уровень "3", связанный с уровнем "2" быстрым безызлучательным переходом, является вспомогательным. Оптическая накачка действует по каналу "1">"3".

    Рис. 1. "Трёхуровневая" схема при оптической накачке

    Найдем условие существования инверсии между уровнями "2" и "1". Полагая статистические веса уровней одинаковыми g1=g2=g3, запишем систему кинетических (балансных) уравнений для уровней "3" и "2" в стационарном приближении, а также соотношение для числа частиц на уровнях:

    где n1, n2, n3 - концентрации частиц на уровнях 1, 2 и 3, Wn1 и Wn3 - скорости поглощения и индуцированного излучения на переходах между уровнями "1" и "3" под действием излучения накачки, вероятность которой W; wik - вероятности переходов между уровнями, N-полное число активных частиц в единице объёма.

    Из (2) можно найти населённости уровней n2 и n1, как функцию W, и их разность Дn в виде

    которая определяет ненасыщенный коэффициент усиления б0 ансамбля частиц на переходе "2">"1". Для того, чтобы б0>0, необходимо, чтобы, т.е. числитель в (3) должен быть положительным:

    где Wпор - пороговый уровень накачки. Так как всегда Wпор>0, то отсюда следует, что w32>w21, т.е. вероятность накачки уровня "2" релаксационными переходами с уровня "3" должна быть больше вероятности его релаксации в состояние "1".

    В случае, если

    w32 >>w21 и w32 >>w31, (5)

    то из (3) получим: . И, наконец, если W>>w21, то инверсия Дn будет: Дn?n2?N, т.е. на уровне "2" можно "собрать" все частицы среды. Заметим, что соотношения (5) для скоростей релаксации уровней отвечают условиям генерации "пичков" (см., Раздел 3.1).

    Таким образом, в трёхуровневой системе с оптической накачкой:

    1) инверсия возможна, если w32>>w21 и максимальна когда w32>>w31;

    2) инверсия возникает при W>Wпор, т.е. создание носит пороговый характер;

    3) при невысоких w21 создаются условия для "пичкового" режима свободной генерации лазера.

    Этот твёрдотельный лазер является первым лазером, заработавшим в видимом диапазоне длин волн (Т.Мейман, 1960 г.). Рубином называют синтетический кристалл Аl2O3 в модификации корунд (матрица) с примесью 0,05% ионов-активаторов Cr3+ (концентрация ионов ~1,6 1019 см_3), и обозначается как Аl2O3:Cr3+. Рубиновый лазер работает по трёхуровневой схеме с ОН (рис. 2,а). Лазерными уровнями являются электронные уровни Cr3+: нижний лазерный уровень "1" является основным энергетическим состоянием Cr3+ в Аl2O3, верхний лазерный уровень "2" - долгоживущий метастабильный уровень с ф2~10_3с. Уровни "3а" и "3б" являются вспомогательными. Переходы "1">"3а" и "1">"3б" принадлежат к синей (л0,41мкм) и "зелёной" (л0,56мкм) частям спектра, и представляют собой широкие (с Дл~50нм) контура поглощения (полосы).

    Рис. 2. Рубиновый лазер. (а) - Диаграмма энергетических уровней Cr3+ в Al2O3 (корунде); (б) - конструктивная схема лазера, работающего в импульсном режиме с модуляцией добротности. 1 - рубиновый стержень, 2 - лампа накачки, 3 - эллиптический отражатель, 4а - неподвижное зеркало резонатора, 4б - вращающееся зеркало резонатора, модулирующее добротность резонатора, Сн - накопительный конденсатор, R - зарядный резистор, "Кн" - кнопка пуска импульса тока через лампу; показан вход и выход охлаждающей воды.

    Метод оптической накачки обеспечивает селективное заселение вспомогательных уровней "3а" и "3б" Cr3+ по каналу "1">"3" ионами Cr3+ при поглощении ионами Cr3+ излучения импульсной ксеноновой лампы. Затем за сравнительно малое время (~10_8 с) происходит безызлучательный переход этих ионов из "3а" и "3б" - на уровни "2". Выделяющаяся при этом энергия превращается в колебания кристаллической решетки. При достаточной плотности с энергии излучения источника накачки: когда, и на переходе "2">"1" возникает инверсия населённостей и генерация излучения в красной области спектра на л694,3нм и л692,9 нм. Пороговая величина накачки с учётом статвесов уровней соответствует переводу на уровень "2" около? всех активных частиц, что при накачке с л0,56 мкм требует удельную энергию излучения Епор>2Дж/см 3 (и мощность Рпор>2кВт/см 3 при длительности импульса накачки ф?10_3c). Столь высокое значение вкладываемой в лампу и рубиновый стержень мощности при стационарной ОН может привести к его разрушению, поэтому лазер работает в импульсном режиме и требует интенсивного водяного охлаждения.

    Схема лазера показана на рис. 2,б. Лампа накачки (лампа-вспышка) и рубиновый стержень для повышения эффективности накачки располагаются внутри отражателя с цилиндрической внутренней поверхностью и сечением в форме эллипса, причём лампа и стержень располагаются в фокальных точках эллипса. В результате всё излучение, выходящее из лампы, оказывается сфокусированным в стержне. Импульс света лампы возникает при пропускании через неё импульса тока путём разряда накопительного конденсатора в момент замыкания контактов кнопкой "Кн". Охлаждающая вода прокачивается внутри отражателя. Энергия излучения лазера в импульсе достигает нескольких джоулей.

    Импульсный режим работы этого лазера может быть одним из следующих (см., Раздел 3):

    1) режим "свободной генерации" при малой частоте повторения импульсов (обычно 0,1-10 Гц);

    2) режим "модулированной добротности", обычно оптико-механический. На рис. 2,б модуляция добротности ООР осуществляется путём вращения зеркала;

    3) режим "синхронизации мод": при ширине линии излучения Дннеодн~1011Гц,

    число продольных мод М~102, длительность импульса ~10 пс.

    Среди применений рубинового лазера: голографические системы записи изображений, обработка материалов, оптические дальномеры и др.

    Широко применяется в медицине и лазер на BeAl2O4:Cr3+ (хризоберилле, легированном хромом, или александрите), излучающий в диапазоне 0,7-0,82 мкм.